Making a Difference, Here & Beyond
The community invests in Dell Med. In return, it’s our responsibility — one we take seriously — to be agents for change and to show real impact.
More Information
Creating a New Kind of Doctor
We recruit and train physician leaders as comfortable taking on systemic challenges in health as caring for individual patients.
Improving Care. Improving Health.
We’re here to make health — including health care — better. The end goal is a complete revolution in how people get and stay healthy.
Discovery to Impact — Faster
We reward creative thinking and encourage rapid experimentation, using collaborative programs to speed promising research to market.
More Information
Let’s Do Big Things Together
True health demands that the whole work in harmony, which is why we’re dedicated to partnership. Indeed, we can’t achieve our goals without it.
More Information
Meet Dell Med
We’re rethinking the role of academic medicine in improving health — and doing so with a unique focus on our community.
More Information
Make an Appointment Directory Give Faculty Students

Novel Nanogels Hold Promise for Improved Drug Delivery to Cancer Patients

Sept. 27, 2019

AUSTIN, Texas — Researchers at The University of Texas at Austin have developed new guidelines for fabricating nanoscale gel materials, or nanogels, that can deliver numerous therapeutic treatments to treat cancer in a precise manner. In addition to enabling the delivery of drugs in response to tumors, their nanogels can target malignant cells (or biomarkers), degrade into nontoxic components and execute multiple clinical functions.

The most important characteristic of the engineering researchers’ nanogels is their ability to be chemically modified or “decorated” with many bioactive molecules. These modifications give the decorated nanogels more diverse physical and chemical properties than any other existing technique, despite their identical origin. Such systems, which have the potential of being tailored to specific diseases or even individual patients, could be a useful tool for oncologists in the future.

In a study published in the latest issue of Science Advances, researchers in the Department of Biomedical Engineering and the McKetta Department of Chemical Engineering in the Cockrell School of Engineering outline the development of these multipurpose nanogels for cancer treatment. Following a series of chemical modifications, the nanogels are capable of performing the following simultaneously or in sequence: loading and releasing drugs, responding to unique pH environments, identifying biomarkers, converting light into therapeutic heating and exhibiting degradation characteristics.

The research team, led by drug delivery pioneer Nicholas Peppas, Sc.D. — a professor in the departments of biomedical engineering and chemical engineering, the UT Austin College of Pharmacy and the Department of Pediatrics and Department of Surgery and Perioperative Care at Dell Medical School — conducted the study over four years at UT’s Institute for Biomaterials, Drug Delivery and Regenerative Medicine, which Peppas directs. They synthesized and purified nanogels containing carboxylic acids, chemical functional groups that are common in natural biological molecules. These functional groups allowed the researchers to modify, or chemically couple, the nanogels to bioactive molecules, such as small molecules, peptides and proteins. A combination of modifications was needed to tailor the nanogels for targeted and environmentally sensitive drug delivery.

“One way to think of our nanogel is like a blank canvas,” said John Clegg, who was a Ph.D. candidate in the Cockrell School when he worked on the study and is currently a postdoctoral fellow at Harvard University. “Untouched, a blank canvas is nothing more than some wood and fabric. Likewise, the nanogel is a simple structure (made of polymer-joining agents and water). When it is modified, or decorated, with different bioactive groups, it retains the activity of each added group. So, the system can be quite simple or quite sophisticated.”

The team’s modular approach — combining many useful parts into a single, greater whole — is frequently applied to other engineering systems, including but not limited to robotics and manufacturing. The Texas Engineering researchers have applied similar logic, except on the nanoscale, to develop their nanogels.

The researchers indicate their work could also serve as a blueprint for “precision medicine” approaches. In precision medicine, a patient is treated with finely tuned doses of targeted therapeutics, prescribed in amounts that correspond to the known characteristics of a patient and the disease that are identified in diagnostic tests.

“If nanoparticle carriers like our nanogels are to be useful for precision medicine applications, they will need to be adaptable enough to match each patient’s needs,” Clegg said. “We believe that our approach, where a base nanogel is adapted to the unique characteristics of an individual patient and facilitates multiple therapeutic modalities, is advantageous in comparison to developing many separate platforms, which each deliver a single therapy.”

The researchers believe that their study can serve as a practical guide and proof of concept for scientists who are developing nanoscale materials for precision medicine applications.

The study was funded by the National Institutes of Health, the National Science Foundation, the UT Austin-Portugal Program and the Cockrell Family Regents Chair.